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Some Challenges of Seeing in Space
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Some Challenges of Seeing in Space

1. High-dynamic range
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orbit to avoid these conditions
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1. High-dynamic range

2. Specular objects

3. Self-shadowing

S
4. Dynamic lighting /imaging |

distances @

5. Cannot just move anywhere in an
orbit to avoid these conditions

But what if you could plan
ahead and choose your orbit?
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Optimise orbit of inspection "chaser” satellite to

minimise visual costs relative to a "target" satellite.
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Our Approach

Optimise orbit of inspection "chaser” satellite to

minimise visual costs relative to a "target" satellite.

How?
- Build an end-to-end differentiable simulator
for on-orbit inspection
o Ditferentiable orbit propagation
o Differentiable rendering
- Minimise arbitrary costs via simple gradient

descent.
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Related Work

NAME Diff. Diff. Photometric? Optical Effects? Photorealistic?
Orbits? Rendering?

ALL-STAR [Li et al. 2024]
SPIN [Montalvo et al. 2024]
SISPO |Pajusalu et al. 2022

HySIM |Felicetti et al. 2024

OLITE |Ours|

g‘?(’ Robotic Imaging Lab, Australian Centre for Robotics | The University of Sydney



End-to-End Differentiable Inspection

(Gradients)
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Building Differentiable Orbital Simulations
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Building Differentiable Orbital Simulations

- Mitsuba 3

- Differentiable orbit propagation in JAX +
Mitsuba 3 rendering
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- Differentiable orbit propagation in JAX +
Mitsuba 3 rendering

- Assume state & geometry are known
(requires depths and surface normals)
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Building Differentiable Orbital Simulations

* " Mitsuba 3

- Differentiable orbit propagation in JAX +
Mitsuba 3 rendering

- Assume state & geometry are known
(requires depths and surface normals)

- Assume always pointing at target

- Simulate passive inspections - e.g.,
circular "football" orbits
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Cost Function: Minimising Specular Reflection
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Cost Function: Minimising Specular Reflection

- Main cost: reduce direct specular
reflections seen by the camera
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Cost Function: Minimising Specular Reflection

. & ﬁ Surface Normal
- Main cost: reduce direct specular View Angle (W
reflections seen by the camera V' Sun Zenith Angle

O Model sun illumination direction, use known
geometry
Phong Reflection Model
O Use physically-based reflection model, model
strength of reflection from surface seen by
the camera
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reflections seen by the camera V' Sun Zenith Angle

O Model sun illumination direction, use known
geometry
Phong Reflection Model
O Use physically-based reflection model, model
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Cost Function: Minimising Specular Reflection

. . ﬁ Surface Normal
- Main cost: reduce direct specular : _
View Angle ()
reflections seen by the camera V' Sun Zenith Angle

O Model sun illumination direction, use known
geometry
Phong Reflection Model
O Use physically-based reflection model, model
strength of reflection from surface seen by
the camera

PN

- Additional cost: relative distance
between chaser and target to avoid drift
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Comparing Relative Orbits
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Target satellite (e.g., Hubble)

Original relative orbit
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Optimising the orbital elements to
improve visual costs leads to new,
specialised inspection trajectories in

the relative frame.
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- Optimising the orbital elements to
improve visual costs leads to new,
specialised inspection trajectories in
the relative frame.

- Deviation from the initial orbit is very
small, so delta V costs are low.

40+
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Conclusions
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Conclusions

- Fully-differentiable vision-to-planning pipeline.
- Demonstrated capability in optimising inspection trajectories.
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Conclusions

- Fully-differentiable vision-to-planning pipeline.
- Demonstrated capability in optimising inspection trajectories.

Future Work

- Integrate attitude dynamics & materials, add uncertainty quantification
- Apply to mission planning & operations.
- Other applications combining imaging & orbits (e.g., Earth observation tasking).
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